
Tidy Evaluation (Tidy Eval) is not a package, but a framework
for doing non-standard evaluation (i.e. delayed evaluation) that
makes it easier to program with tidyverse functions.

piSymbol - a name that represents a value
or object stored in R. is_symbol(expr(pi))
Environment - a list-like object that binds
a1symbols (names) to objects stored in memory.
b2Each env contains a link to a second, parent
env, which creates a chain, or search path, of
environments. is_environment(current_env())

rlang::caller_env(n = 1) Returns
calling env of the function it is in.
rlang::child_env(.parent, ...) Creates
new env as child of .parent. Also env.
rlang::current_env() Returns
execution env of the function it is in.

1Constant - a bare value (i.e. an atomic
vector of length 1). is_bare_atomic(1)
abs(1)Call object - a vector of symbols/constants/calls
that begins with a function name, possibly
followed by arguments. is_call(expr(abs(1)))

picodeCode - a sequence of symbols/constants/calls
3.14resultthat will return a result if evaluated. Code can be:
1. Evaluated immediately (Standard Eval)
2. Quoted to use later (Non-Standard Eval)
is_expression(expr(pi))

eExpression - an object that stores quoted code
without evaluating it. is_expression(expr(a + b)) a + b

qQuosure- an object that stores both quoted

a + b,acode (without evaluating it) and the code's benvironment. is_quosure(quo(a + b))

a
brlang::quo_get_env(quo) Return the environment of a quosure.
a
brlang::quo_set_env(quo, expr) Set the environment of a quosure.

a + brlang::quo_get_expr(quo) Return
the expression of a quosure.
Expression Vector - a list of pieces of quoted
code created by base R's expression and parse
functions. Not to be confused with expression.

parse

Parse - Convert a string
to a saved expression.

rlang::parse_expr(x) Convert
a string to an expression. Also
parse_exprs, sym, parse_quo,
parse_quos. e<-parse_expr("a+b")

deparse

Deparse - Convert a saved
expression to a string.

rlang::quo(expr) Quote contents as a quosure. Also quos to quote
multiple expressions. a <- 1; b <- 2; q <- quo(a + b); qs <- quos(a, b)

rlang::enquo(arg) Call from within a function to quote what the user
passed to an argument as a quosure. Also enquos for multiple args.
quote_this < - function(x) enquo(x)
quote_these < - function(…) enquos(…)
rlang::new_quosure(expr, env = caller_env()) Build a
quosure from a quoted expression and an environment.
new_quosure(expr(a + b), current_env())

rlang::call2(.fn, ..., .ns = NULL) Create a call from a function and a list
of args. Use exec to create and then evaluate the call. (See back page
for !!!) args <- list(x = 4, base = 2)

call2("log", x = 4, base = 2)
log(x =4, base =2)call2("log", !!!args)
2exec("log", x = 4, base = 2)
exec("log", !!!args)

Quosure- An expression that has
been saved with an environment
(aka a closure).
A quosure can be evaluated later
in the stored environment to
return a predictable result.

rlang::expr_text(expr, width =
60L, nlines = Inf) Convert expr
to a string. Also quo_name.
expr_text(e)

a <- 1; b <- 2
p <- quo(.data$a + !!b)
mask <- tibble(a = 5, b = 6)
eval_tidy(p, data = mask)

rlang::eval_bare(expr, env =
parent.frame()) Evaluate expr in
env. eval_bare(e, env =.GlobalEnv)

rlang::expr(expr) Quote contents. Also exprs to quote multiple
expressions. a <- 1; b <- 2; e <- expr(a + b); es <- exprs(a, b, a + b)

rlang::enexpr(arg) Call from within a function to quote what the user
passed to an argument. Also enexprs to quote multiple arguments.
quote_that < - function(x) enexpr(x)
quote_those < - function(…) enexprs(…)
rlang::ensym(x) Call from within a function to quote what the user
passed to an argument as a symbol, accepts strings. Also ensyms.
quote_name < - function(name) ensym(name)
quote_names < - function(…) ensyms(…)

Quoted Expression - An expression
that has been saved by itself.
A quoted expression can be evaluated
later to return a result that will depend
on the environment it is evaluated in

To evaluate an expression, R :
1.Looks up the symbols in the expression in

the active environment (or a supplied one),
followed by the environment's parents
2.Executes the calls in the expression

rlang::eval_tidy(expr, data = NULL,
env = caller_env()) Evaluate expr in
env, using data as a data mask.
Will evaluate quosures in their
stored environment. eval_tidy(q)
Data Mask - If data is non-NULL,
eval_tidy inserts data into the
search path before env, matching
symbols to names in data.
Use the pronoun .data$ to force a
symbol to be matched in data, and
!! (see back) to force a symbol to
be matched in the environments.

Tidy evaluation with rlang : : CHEAT SHEET

q
a + b,

"a + b"

a + b
3

e
a + b

"a + b"

Quote code in one of two ways (if in doubt use a quosure):

QUOSURES

a + b

a + b
3

e
a + b

a

+
b
a + b
3

EXPRESSION

e
a + b

?
a + b
?

The result of an expression depends on
which environment it is evaluated in.

QUOTED EXPRESSIONQUOSURES (and quoted exprs)

a b

a b

b

a

Vocabulary

Building Calls

Parsing and Deparsing

Quoting Code

Evaluation

when
evaluated

+

when
evaluated

1

fun
2

fun(1, 2)

log

log

log

log

a

QUOTATION

e
a + b

a + b
3

1

b

log(e)

log(3)

uno = 1

log(1 + b)

log

log(8, b=2)

e
a + b

QUASIQUOTATION

rlang provides !!, !!!, and := for doing quasiquotation.

log(a + b)

MODIFY USER ARGUMENTS

my_do <- function(f, v, df) {
f <- rlang::enquo(f)
v <- rlang::enquo(v)

todo <- rlang::quo((!!f)(!!v))
rlang::eval_tidy(todo, df)

}

PROGRAM WITH A QUOTING FUNCTION

1

2

1

2
3

speed == 25

dplyr::filter(cars, speed = = 25)

PASS MULTIPLE ARGUMENTS
TO A QUOTING FUNCTION

group_mean <- function(data, var, …) {
require(dplyr)
var <- rlang::enquo(var)

group_vars <- rlang::enquos(…) 1
 data %>%

group_by(!!!group_vars) %>% 2
 summarise(mean = mean(!!var))
}

APPLY AN ARGUMENT TO A DATA FRAME

subset2 <- function(df, rows) {
rows <- rlang::enquo(rows) 1

 vals <- rlang::eval_tidy(rows, data = df)
df[vals, , drop = FALSE] 2

}

PASS CRAN CHECK

WRITE A
FUNCTION
THAT RECOGNIZES
QUASIQUOTATION
(!!,!!!,:=)

add1 <- function(x) {
q <- rlang::enquo(x)
rlang::eval_tidy(q) + 1

}

#' @importFrom rlang .data
mutate_y <- function(df) {
dplyr::mutate(df, y = .data$a +1)
}

1
2

1

2

PASS TO ARGUMENT NAMES
OF A QUOTING FUNCTION

named_mean <- function(data, var) {
require(dplyr)

var <- rlang::ensym(var) 1
 data %>%

summarise(!!name := mean(!!var)) 2
}

(

(

(

(

!!!

!!(

expr(log(e))

)

:=

Storing an expression
without evaluating it.
e <- expr(a + b)

:=

)

)

)

(

expr(log(e))

)

Quoting some parts of an
expression while evaluating
and then inserting the results
of others (unquoting others).
e <- expr(a + b)

!!, !!!, and := are not functions but syntax (symbols recognized
by the functions they are passed to). Compare this to how

. is used by magrittr::%>%()

. is used by stats::lm()

.x is used by purrr::map(), and so on.

!!, !!!, and := are only recognized by some rlang functions and
functions that use those functions (such as tidyverse functions).

!! Unquotes the
symbol or call that
follows. Pronounced
"unquote" or "bang-
bang." a <- 1; b <- 2
expr(log(!!a + b))

Combine !! with ()
to unquote a longer
expression.
a <- 1; b <- 2
expr(log(!!(a + b)))

!!! Unquotes a vector
or list and splices the
results as arguments
into the surrounding
call. Pronounced
"unquote splice" or
"bang-bang-bang."
x <- list(8, b = 2)
expr(log(!!!x))

:= Replaces an = to
allow unquoting within
the name that appears
on the left hand side of
the =. Use with !!
n <- expr(uno)
tibble::tibble(!!n := 1)

1.Capture user argument that will
be quoted with rlang::enquo.

2.Unquote the user argument into
the quoting function with !!.

1.Capture user arguments
with rlang::enquo.
2.Unquote user arguments into a

new expression or quosure to use
3.Evaluate the new expression/

quosure instead of the original
argument

How to spot a quoting function?
A function quotes an argument if the
argument returns an error when run
on its own.

Many tidyverse functions are quoting
functions: e.g. filter, select, mutate,
summarise, etc.

1.Capture user arguments that will
be quoted with rlang::enquos.
2.Unquote splice the user arguments

into the quoting function with !!!.

1.Capture user argument
with rlang::enquo.
2.Evaluate the argument with
rlang::eval_tidy. Pass the data

frame to data to use as a data mask.

3.Suggest in your documentation
that your users use the .data
and .env pronouns.

Quoting function- A function that quotes any of its arguments internally for delayed evaluation in
a chosen environment. You must take special steps to program safely with a quoting function.

1.Capture user argument that will
be quoted with rlang::ensym.

2.Unquote the name into the
quoting function with !! and :=.

1.Capture the
quasiquotation-aware
argument with rlang::enquo.
2.Evaluate the arg with rlang::eval_tidy.

Quoted arguments in tidyverse functions
can trigger an R CMD check NOTE about
undefined global variables. To avoid this:
1.Import rlang::.data to your package,
perhaps with the roxygen2 tag
@importFrom rlang .data

2.Use the .data$ pronoun in front of
variable names in tidyverse functions

Quasiquotation (!!, !!!, :=) Programming Recipes

fun

fun

fun

fun

1

n
uno

fun

x
8, b = 2

2

1

fun

 speed dist 1
25 85

Error!

expr(log(

expr(log(x))

expr(log(!!a + b))

tibble::tibble(!!n

a + b)))

 1)

+
!!

!!

!!

!!!

data_mean <- function(data, var) {
require(dplyr)
var <- rlang::enquo(var)
data %>%

summarise(mean = mean(!!var))
}

!!

