Tidy evaluation with rlang : :CHEAT SHEET

Vocabulary

Tidy Evaluation (Ticdy Eval) is not a package, but a framework
for doing non-standard evaluation (i.e. delayed evaluation) that
makes it easier to program with tidyverse functions.

piSymbol - a name that represents a value

or object stored in R. is_symbol(expr(pi))
Environment - a list-like object that binds
aleymbols (names) to ob{ects stored i |n memory

v contains a lin toas con arent
env which creates a chain, orsearc

environments. is envzronment(current_env())

caller_env(n = 1) Returns
calling env of the function it is in.

child_env(.parent, ...) Creates
new env as child of .parent. Also env.

current_env() Returns
execution env of the function it is in.

1Constant - a bare value (i.e. an atomic

vector of length 1). is_bare_atomic(1)

abs(1)Call object - a vector of symbols/constants/calls
that begins with a function name, possibly

followed by arguments. is call(expr(abs(l)))

picodeCode - a sequence of symbols/constants/calls

3.14resultthat will return a result if evaluated. Code can be:
1. Evaluated immediately (Standard Eval)

2. Quoted to use later (Non-Standard Eval)
is_expression(expr(pi))

eExpression - an object that stores quoted code
vavi}_l‘gut evaluating it. is_expression(expr(a + b))

[_c_}buosure- an object that stores both quoted

Quoting Code

Quote code in one of two ways (if in doubt use a quosure):

QUOSURES

Quosure- An expression that has
been saved with an environment

(aka a closure)
q _when at+ y A quosure can be evaluated later

a+b,F) walvred” in the stored environment to
return a predictable result.

quo(expr) Quote contents as a quosure. Also quos to quote
multiple expressions. a <- 1, b <- 2, q <- quo(a + b), qs <- quos(a, b)

enquo(arg) Call from within a function to quote what the user

passed to an argument as a quosure. Also enquos for multiple args.
quote_this < - function(x) enquo(x)
quote_these < - function(...) enquos(...)

new_cuosure(expr, env = caller_env()) Build a

quosure from a quoted expression and an environment.
new_quosure(expr(a + b), current_env())

Parsing and Deparsing

“a. + bll > e > Ila + bll
parse |4 4+h deparse

Parse - Convert a string Deparse - Convert a saved

to a saved expression. expression to a string.

expr_text(expr, width =
a string to an expression. Also 60L, nlines = Inf) Convert expr
parse_exprs, sym, parse_quo, to a string. Also quo_name.
parse_quos. e<-parse_expr("a+b") expr_text(e)

parse_expr(x) Convert

a + b,acode (without evaluating it) and the code's benvironment. is_quosure(quo(a + b))

a
Hwe envir%u o?“"c?ﬂ%o Return

B ?1 0_set_env(quo, eX[L)I
et the elivironntent of a quosure

a+bh quo_get_expr(quo) Return
the expression of a quosure.
Expression Vector - a list of pieces of quoted

code created by base R's expression and parse
functions. Not to be confused with expression.

Building Calls

call2(.fn, ..., .ns = NULL) Create a call from a function and a list
of args. Use exec to create and then evaluate the call. (See back page
for M) args <- list(x = 4, base = 2)

log(x =4, base =2)call2("log", !!largs)
2exec("log", x = 4, base = 2)
exec("log", Illargs)

call2("log", x = 4, base = 2)

' Smart

EXPRESSION

Quoted Expression - An ex[oression
that has been saved by itself.
e _uhen 2+ P/ A quoted expression can be evaluated

later to return a result that will depend
a+h evaluated

on the environment it is evaluated in

expr(expr) Quote contents. Also exprs to quote multiple
expressions.a<-1 b <-2 e<-expr(a+b) es<-exprs(a, b,a+Db)

enexpr(arg) Call from within a function to quote what the user

passed to an argument. Also enexprs to quote multiple arguments.
quote_that < - function(x) enexpr(x)
quote_those < - function(...) enexprs(...)

ensym(x) Call from within a function to quote what the user

passed to an argument as a symbol, accepts strings. Also ensyms.
quote_name < - function(name) ensym(name)
quote_names < - function(...) ensyms(...)

Evaluation

To evaluate an expression, R :

1.Looks up the symbols in the expression in
a—l the active environment (or a supplied one),
followed by the environment's parents

—f . .
(}_, il 5 2.Executes the calls in the expression

A AIAVIN

a-b fan(, l2)
yi
3

QUOTED EXPRESSIONQUOSURES (and quoted exprs)

eval_bare(expr, env= eval_tidy(expr, data = NULL,
parent.frame()) Evaluate expr in env = caller_env()) Evaluate expr in
env. eval_bare(e, env =.GlobalEnv) env, using data as a data mask.
Will evaluate quosures in their

iy stored environment. eval_tidy(q)
/—‘ a
g Data Mask - If data is non-NULL,
P eval_tidy inserts data into the

search path before env, matching

a+h symbols to names in data.

Use the pronoun .data$ to force a

. 1l symbol to be matched in data, and
data$ I!' (see back) to force a symbol to

be matched in the environments.

' ' = ' : WRITE A
Quasiquotation (I, !, :=) Programming Recipes WRITEA
Quoting function- A function that quotes any of its arguments internally for delayed evaluation in THAT RECOGNIZES
- u | u | rgu | r r vatuatl |
QUOTATION QUASIQUOTATION a chosen environment. You must take special steps to program safely v¥/ith a quo¥ing function. (Q!!U!I-!\!S:I=Q)UOTATION

Quoting some parts of an
expression while evaluating
and then insertlngthe results

Storing an expression
without evaluating it.
e<-expr(a+b)

1.Capture the
quasiquotation-aware

. o
How to spot a quoting function? argument with rlang::enquo.

dplyr::filter(cars, speed = = 25)

of others (unquefting others). A function quotes an argument if the ddi
e <-expr(a +?7) argument returns an error when run speed dist 1 2 Evaluate the arg with rlang::eval_tidy.
on Its own. 25 85 -
e)
Many tidyverse functions are quoting add1 <- function(x) {
lo e I»lo e lo a b»lo a+bh speed == 25 i .
H log [ge) W log fa- ga+h) functions: e.g. filter, select, mutate, E q <- rlang::enquo(x) 1
fun @ a+bh fun summarise, etc. Error! rlang::eval_tidy(q) + 1 2
1 /
PROGRAM WITH AQUO TING FUNCTION . PASSMULTI S RGU MENTS eeeeieeeees pAss TOARGUMENTNAMES
rlang provides !, 1", and := for doing quasiquotation. TO A QUOTING FUNCTION OF A QUOTING FUNCTION
11, M and := are not functions but syntax (symbols recognized data_mean <- function(data, var) { group_mean <- function(data, var, ...) { named_mean <- function(data, var) {

by the functions they are passed to). Compare this to how

.is used by magrittr::%>%()

.is used by stats::lm()
X is used by purrr::map(), and so on.

functlons that use those functions (such as tidyverse functions).

a
Wiog (1] + [0l

log(1 + b)
fun fun |2
n
a+bh
RO) 6
fun
N+ h)

X
Jlog §8b-=2 » log(8, b=2)

fun

"

B oo BTl uno=1
1

=

' Unquotes the
symbol or call that
follows. Pronounced
"unquote or "bang-
bang."a<-1;b<-2
expr(log(!la + b))

Combine ! with ()

to unquote a longer
expression.
a<-1;b<-2
expr(log(!!(a + b))

M Unquotes a vector

or list and splices the

results as arguments

into the surrounding

call. Pronounced
"unquote splice" o

"bang ban% bang

x <- list(8,

expr(log(!!x))

:= Replaces an =to
allow unquoting within
the name that appears
on the left hand side of
the =. Use with !!

n <- expr(uno
tibble: lz?zbble/ IIn:=1)

require(dplyr)
var <- rlang::enquo(var) 1
data %>%

summarise(mean = mean(!lvar)) 2
/

1.Capture user argument that will
be quoted with rlang::enquo.

2.Unquote the user argument into
the quoting function with !!.

MODIFY USER ARGUMENTS

my_do <- function(f, v, df) {
f <-rlang::enquo(f) 1
v <-rlang::enquo(v)
todo <- rlang::quo(("!f)("'v)) 2
rlang::eval_tidy(todo, df) 3
/

1.Capture user arguments
with rlang::enquo.

2.Unquote user arguments into a
new expression or quosure to use
3.Evaluate the new expression/

quosure instead of the original
argument

require(dplyr)
var <- rlang::enquo(var)
group_vars <- rlang::enquos(..) 1
data %>%
group_by('group_vars) %>% 2
summarise(mean = mean(!!var))

i

1.Capture user arguments that will
be quoted with rlang::enquos.

2.Unquote splice the user arguments
into the quoting function with 1.

APPLY AN ARGUMENT TO A DATA FRAME

subset2 <- function(df, rows) {
rows <- rlang::enquo(rows) 1
vals <- rlang::eval_tidy(rows, data = df)
df[vals, , drop = FALSE] 2

1.Capture user argument
with rlang::enquo.

2.Evaluate the argument with
rlang::eval_tidy. Pass the data

frame to data to use as a data mask.
3.Suggest in your documentation

that your users use the .data
and .env pronouns.

require(dplyr)
var <- rlang::ensym(var) 1
data %>%
summarise('name := mean(!!var)) 2
/

1.Capture user argument that will
be quoted with rlang::ensym.

2.Unquote the name into the
quoting function with !! and :=

PASS CRAN CHECK

#' @importFrom rlang .data 1
mutate_y <- function(df) {
dplyr::mutate(df, y = .data$a +1) 2
/

Quoted arguments in tidyverse functions
can trigger an R CMD check NOTE about
undefined global variables. To avoid this:

1.Import rlang::.data to your package,

perhaps with the roxygenz tag
@importFrom rlang .data

2.Use the .data$ pronoun in front of
variable names in tidyverse functions

